Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study

نویسندگان

  • Viktor Ivády
  • Tamas Simon
  • Jeronimo R. Maze
  • Igor Abrikosov
  • Adam Gali
  • Tamás Simon
  • I. A. Abrikosov
چکیده

temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: Nitrogen-vacancy centers in diamond (NV) attract great attention because they serve as a tool in many important applications. The NV center has a polarizable spin S = 1 ground state and its spin state can be addressed by optically detected magnetic resonance (ODMR) techniques. The m S = 0 and m S = ±1 spin levels of the ground state are separated by about 2.88 GHz in the absence of an external magnetic field or any other perturbations. This zero-field splitting (ZFS) can be probed by ODMR. As this splitting changes as a function of pressure and temperature, the NV center might be employed as a sensor operating at the nanoscale. Therefore, it is of high importance to understand the intricate details of the pressure and temperature dependence of this splitting. Here we present an ab initio theory of the ZFS of the NV center as a function of external pressure and temperature including detailed analysis on the contributions of macroscopic and microscopic effects. We found that the pressure dependence is governed by the change in the distance between spins as a consequence of the global compression and the additional local structural relaxation. The local structural relaxation contributes to the change of ZFS with the same magnitude as the global compression. In the case of temperature dependence of ZFS, we investigated the effect of macroscopic thermal expansion as well as the consequent change of the microscopic equilibrium positions. We could conclude that theses effects are responsible for about 15% of the observed decrease of ZFS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined effects of pressure, temperature, and magnetic field on the ground state of donor impurities in a GaAs/AlGaAs quantum heterostructure

In the present work, the exact diagonalization method had been implemented to calculate the ground state energy of shallow donor impurity located at finite distance along the growth axis in GaAs/AlGaAs heterostructure in the presence of a magnetic field taken to be along z direction. The impurity binding energy of the ground state had been calculated as a function of confining frequency and mag...

متن کامل

Electric-Field-Induced Triplet to Singlet Transition in Size-2 Trigonal Zigzag Graphene Nanoflake

Using Hartree-Fock Su-Sheriffer-Heeger (HF-SSH) model, we have studied the dependence of the energies of the ground (magnetic triplet state) and the first exited (nonmagnetic singlet state) states of the size-2 trigonal zigzag graphene nanoflake (size-2 NF) on the intensity of an external in plane static electric field at zero temperature. We identify a transition from the magnetic triplet stat...

متن کامل

Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond.

The optical transition linewidth and emission polarization of single nitrogen-vacancy (NV) centers are measured from 5 K to room temperature. Interexcited state population relaxation is shown to broaden the zero-phonon line and both the relaxation and linewidth are found to follow a T(5) dependence for T < 100 K. This dependence indicates that the dynamic Jahn-Teller effect is the dominant deph...

متن کامل

Development of a Platform for Sensing Cellular Electrical Activity Using Nitrogen Vacancy Centers in Nanodiamonds

The nitrogen vacancy center (NV) in diamond hosts unique optical properties that allows it to be used for sensing magnetic fields, electric fields, and temperature. In addition, the photostability of the NV center and the biocompatibility of diamond suggests the utility of the NV center for biosensing. The dependence of the charge state of the NV center on the local electrochemical environment ...

متن کامل

Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond.

The temperature dependence of the magnetic-resonance spectra of nitrogen-vacancy (NV-) ensembles in the range of 280-330 K was studied. Four samples prepared under different conditions were analyzed with NV- concentrations ranging from 10 ppb to 15 ppm. For all samples, the axial zero-field splitting (ZFS) parameter D was found to vary significantly with temperature, T, as dD/dT=-74.2(7) kHz/K....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015